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Abstract. Multivariate long-term time series forecasting is of great ap-
plication across many domains, such as energy consumption and weather
forecasting. With the development of transformer-based methods, the
performance of multivariate long-term time series forecasting has been
significantly improved, however, the study of spatial features extract-
ing in transformer-based model is rare and the consistency of different
prediction periods is unsatisfactory due to the large span. In this work,
we propose a complete solution to address these problems in terms of
feature extraction and target prediction. For extraction, we design an
efficient spatio-temporal encoding extractor including a semi-adaptive
graph to acquire sufficient spatio-temporal information. For prediction,
we propose a Cascaded Decoding Predictor (CDP) to strengthen the
correlation between different intervals, which can also be utilized as
a generic component to improve the performance of transformer-based
methods. The proposed method, termed as Spatio-temporal Encoding
Cascaded Transformer (Stecformer), achieving a notable gap over the
baseline model and is comparable with the state-of-the-art performance
of transformer-based methods on five benchmark datasets. We hope our
attempt will serve as a regular configuration in multivariate long-term
time series forecasting in the future.

Keywords: Spatio-temporal encoding extractor · Cascaded decoding
predictor · Multivariate long-term time series

1 Introduction

The application of time series forecasting in energy consumption, retail man-
agement and disease propagation analysis has increased dramatically in recent
years. Meanwhile, in the field of multivariate long-term time series forecasting
(MLTSF), there are more and more requirements for automatic prediction of
deep learning tools [3, 13, 12, 7] especially transformer-based methods [9]. Due
to high computational complexity and memory requirement of transformer [15],
many works are addicted to reducing the time and memory cost and getting not
too much sacrifices on the performance [8, 6, 20, 16].

Despite the great achievements of transformer-based methods in MLTSF,
they tend to ignore the spatial information contained in multi-features and fail
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to ensure the consistency of different prediction periods. Therefore, the draw-
backs of existing transformer-based methods are as follows: (i) The point-wise
information is considered as an entity in the process of constructing point-wise
[20] or series-wise [6] attention matrix, which dismisses the spatial relations be-
tween features inevitably. (ii) The relations between points that are far away
are not given special attention, which means the prediction results of different
periods vary greatly over the long time span. As for the former, recent works
[2, 17, 18] focus on utilizing a graph to build spatial connections between fea-
tures. For instance, Cui et al. [2] propose a generic framework with multi-scale
temporal graphs neural networks, which models the dynamic and cross-scale
variable correlations simultaneously. As for the latter, some recent works [12, 10]
attempt to use multiple stacked blocks to predict different intervals. However,
the consistency of different prediction intervals with transformer-based methods
has not been studied to our best knowledge. Therefore, there is a strong demand
to rethink the implementation of transformer structure in MLTSF.

In order to address the aforementioned obstacles, contributions have been
made to spatial features extraction and the consistency of different prediction
periods in this paper. For encoding process, we propose a spatio-temporal en-
coding extractor that incorporates a vanilla self-attention module and an extra
graph convolution module. The former captures temporal correlations between
series points. The latter prompts the models to focus on the spatial details in
point-wise features by semi-adaptive graph structure. Different from existing
learned dynamic graphs in METRO [2], our graph convolution module combine
the learned graph and the computed graph, called the semi-adaptive graph, to
enhance the robustness of the model to abnormal data. For decoding process,
we try to eliminate the influence of long time span on the prediction results.
Under this motivation, we propose Cascaded Decoding Predictor (CDP) to bal-
ance the prediction accuracy of different time periods. As shown in Figure 1,
the proposed CDP consists of a series of concatenated decoders, each of which
is responsible for a specified prediction interval. Each decoder is customized by
means of intermediate supervision and input of pre-query. The tightly cascaded
decoders can effectively alleviate the prediction volatility of the model in the
long term. The main contributions of this paper can be summarized as follows:

– We propose an effective semi-adaptive graph structure called spatio-temporal
encoding extractor, which assists the transformer encoder to dig deeply into
the spatial correlations inside the point-wise features.

– We analyze the discrepancies between short and long-term prediction inter-
vals. The designed Cascaded Decoding Predictor is customized to narrow
the prediction gap and can be utilized as a generic component to improve
the performance of different transformer-based models.

– We conduct extensive experiments over 5 benchmark datasets across many
domains, such as energy, economics, weather and disease. With the above
techniques, our Stecformer achieves a notable gap over the baseline model
and is comparable with the state-of-the-art performances of transformer-
based methods on public benchmark datasets.
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2 Related Works

2.1 Transformer-based Model

As one of the most important attention mechanisms in deep learning, transformer
has demonstrated its great superiority in MLTSF[1, 11, 21]. Observations in time
series data are treated as points in transformer, and the correlations between
different points are built through self-attention and cross-attention mechanisms.
However, the quadratic computation complexity is inherent in such point-wise
setting, which has led to the emergence of many excellent works to reduce the
time and memory cost of transformer. Li et al. [8] propose LogTrans, which
consists of several variants of the self-attention mechanism, such as Restart At-
tention, Local Attention and LogSparse Attention. The points involved in the
attention matrix are selected according to the distance of exponential length
and the selection seems to be heuristic. Kitaev et al. [6] use local sensitive hash
attention to replace the global dot product attention to reduce the complexity.
Similarly, Zhou et al. [20] employ KL-divergence to the top-k points selection,
which accelerates the computation of attention matrix. Both of these two works
utilize hand-designed metrics to construct the sparser attention matrix. Cirstea
et al. [1] develop an efficient attention mechanism, namely Patch Attention,
which ensures an overall linear complexity along with triangular, multi-layer
structure. Liu et al. [11] introduce Pyraformer to simultaneously capture tem-
poral dependencies of different ranges in a compact multi-resolution fashion.

Another emerging strategy is to discover a more reasonable representation
that replaces the original input sequence. In Wu’s research [16], the sequence
is decomposed into trend-cyclical and seasonal representation, accounting for
mainstream forecast and seasonal fluctuations, respectively. Zhou et al. [21] focus
on input sequence denoising and use Fourier Transform to retain low frequency
information. In this work, we inherit the some components of Autoformer [16],
and the implement of transformer structure on multivariate long-time series
forecasting is reconsidered on this basis.

2.2 Graph-based Model

Graph is usually used to establish the spatial dependencies between different
nodes, and the weights of edges indicate the closeness between nodes. In re-
cent years, some works have applied graph structure to multivariate time series
forecasting, especially to describing the relationships among variables. Guo et
al. [4] propose a novel attention based spatial-temporal graph convolution net-
work (ASTGCN) to model the dynamic correlations of traffic data. Similarly,
Yao et al. [19] introduce a flow gating mechanism to learn the dynamic simi-
larity between locations. Wu et al. [17] propose a general graph neural network
to automatically extract the uni-directed relations among variables through a
graph learning module, into which external knowledge like variable attributes
can be easily integrated. Beyond these, Cui et al. [2] develop a generic multi-
scale temporal graph neural network framework that leverages both dynamic and
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Fig. 1. An overview of the proposed Stecformer.

cross-scale variable correlations, which shows that previous graph-based models
can be interpreted as specific instances.

3 Methods

As depicted in Figure 1, the proposed Stecformer contains two key components:
1) A spatio-temporal encoding extractor to generate features that contain both
spatial and temporal information; 2) A Cascaded Decoding Predictor (CDP) to
predict the results of predetermined intervals. It is worth noting that all the
cascaded decoders in CDP share the same features output from the encoding
stage. At the end of this section, we give a concise description of the loss function
of the proposed Stecformer.

3.1 Spatio-temporal Encoding Extractor

As shown in Figure 1, the spatio-temporal encoding extractor consists of several
spatio-temporal encoder layers. In each layer, two parallel branches, including
a vanilla self-attention module and an extra graph convolution module, are at-
tached to the shared input embedding. In this paper, we replace self-attention
with auto-correlation in Autoformer [16] unless otherwise specified. Therefore,
the vanilla self-attention module captures temporal correlations between series
points as Autoformer does. Inspired by the adaptive graph for skeleton-based
action recognition [14] in computer vision, we redesign the customized graph
convolution module and set it at a reasonable place for transformer-based mul-
tivariate time series forecasting. As depicted in Figure 2, the proposed graph
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Fig. 2. Graph convolution module, including a semi-adaptive graph.

convolution module covers a semi-adaptive graph, which combines the learned
graph Gl and the computed graph Gc to prompt the model to focus on the
spatial details in point-wise features.

Consider we have V time series, denoted as x = [x1(t), ..., xV (t)], t = 1, 2, ..., T .
T stands for the point numbers corresponding to the observations entered into
the model, and V is the number of variables. In our graph convolution module,
we rethink the point-wise variables on spatial dimension and utilize a convolu-
tion operator f to expand the single channel (1) into multiple channels (Cin).
Then, we apply the normalized embedded Gaussian function to get the similarity
of two nodes in the computed graph Gc:

Gc(vi, vj) =
eϕ(vi)

Tφ(vj)∑V
j=1 e

ϕ(vi)Tφ(vj)
(1)

where vi, vj stand for ith, jth node tensor after the transformation of f , ϕ and
φ are two convolution operators to change the number of channels from Cin to
Cmid. Meanwhile, we randomly initialize the matrix A as the learned graph Gl

and set the sum of Gc and Gl as our final semi-adaptive graph Gsa. Therefore,
the whole process of graph convolution module is described below:

z = WhWfx+WgWfxGsa (2)

where Wg,Wh,Wf are the weights of different convolution operators and the
shape transformations are omitted for simplicity. Finally, we acquire spatio-
temporal feature maps by the weighted sum of graph convolution module and
the self-attention module. It is worth noting that the output of spatio-temporal
encoding extractor will run through the whole Cascaded Decoding Predictor, so
it is necessary to get the fully expressed feature maps.
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3.2 Cascaded Decoding Predictor (CDP)

As shown in Figure 1, all the cascaded decoders in the decoding process are
attached to the shared feature maps output from encoding phase. Each decoder
takes the output from the previous decoder as the query, and takes the output
from the encoding phase as the key and the value. In the subsequent sections,
we will introduce the details of the proposed CDP.

Consistency of adjacent intervals. The whole interval to be predicted is
decomposed into many small continuous sub-intervals, and the prediction accu-
racy of different intervals is narrowed by the cascaded decoders. Consider we have
N decoders to predict results of N intervals, denoted asD = {D1, D2, ..., DN} →
I = {I1, I2, ..., IN}. In the first decoder D1, we predict the results of intervals
from I1 to IN , the result of I1 has two destinations. On the one hand, it is used
as the intermediate output of the model. On the other hand, it is used as a part
of the start-token of the second decoder, and forms a new query with the results
of the remaining intervals (from I2 to IN ) input into the second decoder. We get
the output of all intervals in the same way. With the help of natural structure
of query, key, and value in the transformer decoder, we can use the features
extracted in the encoding stage (key and value) and the results of the previous
interval (query) to predict the later interval. The whole process of CDP can be
expressed as the following recursive formula:

qi = Concat(Xi
token, Qi−1[Ii : IN ])

Qi = Di(qi, k, v)

yi = Qi[Ii]

(3)

where qi, Qi stand for the input query and the output of decoder Di, and k, v are
the output from the spatio-temporal encoding extractor. Qi[Ii] means to select
the results of interval Ii in Qi, and Ii : IN represents the set of intervals from Ii
to IN . Notably, yi is part of the output Qi and performs intermediate supervision
with the ground truth labels. The decoder Di simplifies auto-correlation module
and series decomposition block in Autoformer [16] as follows:

s0i , t
0
i = SeriesDecomp(qi)

s1i , t
1
i = SeriesDecomp(Auto-Correlation(s0i ) + s0i )

s2i , t
2
i = SeriesDecomp(Auto-Correlation(s1i , k, v) + s1i )

s3i , t
3
i = SeriesDecomp(FeedForward(s2i ) + s2i )

Qi = s3i + t0i + t1i + t2i + t3i

(4)

The motivation for such a cascaded paradigm is that results over a shorter period
of time can be considered accurate enough, or even closed to be true. When pre-
dicting a later interval, the ”real” results of the previous interval can be used to
predict the next adjacent one. In the experimental section, this cascaded struc-
ture is shown to ensure consistent prediction accuracy across different intervals.

Forward start-token. The query of each decoder consists of start-token
and the predicted results of the previous decoder. In the first decoder D1, we
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sample an earlier slice before the output sequence. Take predicting 96 points
as an example, we will take the known 48 points before the target sequence as
start-token, and pad the rest of 96 points with 0 to get the first input query q1 =
Concat(X1

token, X0). When it comes to the decoder Di, we use a small number
of real points (or none) and the predicted result y1, y2, ..., yi−1 of the previous
decoders as the start-token Xi

token. The rest is padding with the Qi−1[Ii : IN ],
which is is closer to the real results of the interval Ii to IN than 0 padding.
The reason for such forward start-token setting is that the results output by the
previous decoder has a higher confidence probability to be a guide for predicting
the results of the subsequent one.

3.3 Loss Function

Follow the spirit of transformer-based methods [16, 21] in multivariate time se-
ries forecasting, we choose the MSE loss function to train all the modules in
Stecformer jointly. The overall loss function is as follows:

L =

N∑
i

λiMSE(yi, ŷi) (5)

where λi, yi, ŷi are the control parameter, predicted and ground-truth labels for
the interval Ii, respectively.

4 Experiments

4.1 Datasets and Evaluation Protocols

We conduct extensive experiments on five popular public datasets, including
energy, economics, weather and disease, to verify the effectiveness of the proposed
method. The details of the experiment datasets are summarized as follows: 1)
ETTm2 [20] contains 2-year data of electric power deployment. Each record
consists of 6 power load features and the target value ”oil temperature”, which
is collected every 15 minutes from July 2016 to July 2018. 2) ECL1 contains 3-
year data (July 2016˜July 2019) of electricity consumption (Kwh). Each record
consists of 321 clients and is collected every 1 hour. 3) Exchange [7] contains
the daily exchange rates of 8 countries from January 1990 to October 2010.
4) Weather2 contains 21 meteorological indicators, such as humidity and air
temperature, which is recorded every 10 minutes from January 2020 to December
2020 in Germany. 5) Illness3 contains influenza-like illness patients number from
Centers for Disease Control and Prevention in the United States [16], which
is recorded weekly from January 2002 to July 2020. All datasets are split into
training set, validation set and test set by the ratio of 7:1:2. The mean square
error (MSE) and mean absolute error (MAE) are used as evaluation protocols.

1 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2 https://www.bgc-jena.mpg.de/wetter/
3 https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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Table 1. Multivariate long-term time series forecasting results on five benchmark
datasets. * denotes the fourier version in FEDformer. The input length is fixed to 96
and the prediction length are fixed to be 96, 192, 336, and 720, respectively (For ILI
dataset, we set input length as 36 and prediction length as 24, 36, 48, 60).

Methods Stecformer FEDformer* Autoformer Informer LogTrans Reformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm2

96 0.188 0.280 0.203 0.287 0.255 0.339 0.365 0.453 0.768 0.642 0.658 0.619

192 0.260 0.327 0.269 0.328 0.281 0.340 0.533 0.563 0.989 0.757 1.078 0.827

336 0.324 0.362 0.325 0.366 0.339 0.372 1.363 0.887 1.334 0.872 1.549 0.972

720 0.416 0.418 0.421 0.415 0.422 0.419 3.379 1.338 3.048 1.328 2.631 1.242

ECL

96 0.182 0.298 0.193 0.308 0.201 0.317 0.274 0.368 0.258 0.357 0.312 0.402

192 0.195 0.310 0.201 0.315 0.222 0.334 0.296 0.386 0.266 0.368 0.348 0.433

336 0.203 0.319 0.214 0.329 0.231 0.338 0.300 0.394 0.280 0.380 0.350 0.433

720 0.225 0.338 0.246 0.355 0.254 0.361 0.373 0.439 0.283 0.376 0.340 0.420

Exchange

96 0.113 0.243 0.148 0.278 0.197 0.323 0.847 0.752 0.968 0.812 1.065 0.829

192 0.229 0.349 0.271 0.380 0.300 0.369 1.204 0.895 1.040 0.851 1.188 0.906

336 0.399 0.463 0.460 0.500 0.509 0.524 1.672 1.036 1.659 1.081 1.357 0.976

720 1.095 0.804 1.195 0.841 1.447 0.941 2.478 1.310 1.941 1.127 1.510 1.016

Weather

96 0.190 0.273 0.217 0.296 0.266 0.336 0.300 0.384 0.458 0.490 0.689 0.596

192 0.246 0.317 0.276 0.336 0.307 0.367 0.598 0.544 0.658 0.589 0.752 0.638

336 0.314 0.356 0.339 0.380 0.359 0.395 0.578 0.523 0.797 0.652 0.639 0.596

720 0.385 0.404 0.403 0.428 0.419 0.428 1.059 0.741 0.869 0.675 1.130 0.792

ILI

24 3.022 1.189 3.228 1.260 3.483 1.287 5.764 1.677 4.480 1.444 4.400 1.382

36 2.617 1.079 2.679 1.080 3.103 1.148 4.755 1.467 4.799 1.467 4.783 1.448

48 2.512 1.055 2.622 1.078 2.669 1.085 4.763 1.469 4.480 1.468 4.832 1.465

60 2.598 1.089 2.857 1.157 2.770 1.125 5.264 1.564 5.278 1.560 4.882 1.483

4.2 Implementation Details

All the experiments are implemented in PyTorch v1.9.0 and conducted on a
workstation with 2 Nvidia Tesla M40 12GB GPUs. All models are optimized by
ADAM [5] algorithm with batch size 16. The learning rate is set to 1e−4. An
early stopping counter is employed to stop the training process after 3 epochs if
no less degradation on the valid set is observed. With respect to spatio-temporal
encoding extractor, we use only 1 spatio-temporal encoder to extract the fea-
tures, and the weight of graph convolution module is empirically set as 0.5. In
Cascaded Decoding Predictor, we set up 4 decoders and predict the intermediate
results every 2 decoders in all experiments, which prevents too many decoders
from leading to overfitting. The length of the prediction interval is 1/4 and 3/4
of the output sequence, respectively. The control parameters in the loss function
take on step-down reduction of 0.1 at a time from the furthest interval to the
nearest one, and the parameter λN is set as 1.
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Table 2. Ablation studies of several modules in Stecformer on Exchange dataset. GCM
stands for graph convolution module, GCM* means the common graph without the
learned graph Gl.

Exp ID baseline CDP GCM GCM* Metric
Exchange

96 192 336 720

Exp 1 ✓
MSE 0.180 0.273 0.481 1.213
MAE 0.311 0.383 0.517 0.861

Exp 2 ✓ ✓
MSE 0.129 0.233 0.420 1.132
MAE 0.259 0.350 0.478 0.824

Exp 3 ✓ ✓
MSE 0.130 0.242 0.440 1.133
MAE 0.256 0.353 0.491 0.826

Exp 4 ✓ ✓
MSE 0.152 0.279 0.449 1.143
MAE 0.282 0.386 0.492 0.828

Exp 5 ✓ ✓ ✓
MSE 0.113 0.229 0.399 1.095
MAE 0.243 0.349 0.463 0.804

4.3 Comparisons with Prior Arts

We compare our proposed Stecformer with several state-of-the-art methods on
public ETTm2, ECL, Exchange, Weather and ILI datasets. As reported in Ta-
ble 1, our Stecformer achieves the best performance on almost five benchmark
datasets at all horizons. The only flaw is the 720-day MAE metric of the ETTm2
dataset. We guess that this is because the ETTm2 dataset is noisy, and the large
amount of parameters will cause overfitting. This also explains why our Stec-
former does not improve too much compared to other models on ETTm2. In
details, the proposed model Stecformer outperforms FEDformer [21] on MSE by
decreasing 11.1% (at 96), 7.0% (at 192), 6.1% (at 336), 6.3% (at 720) on average,
and outperforms Autoformer [16] on MSE by decreasing 24.0% (at 96), 15.8%
(at 192), 11.3% (at 336), 10.3% (at 720) on average.

Table 3. Effectiveness of Cascaded Decoding Predictor on different transformer-based
methods. * denotes the fourier version in FEDformer.

Methods Metric
ECL Weather

96 192 336 720 96 192 336 720

Informer
MSE 0.345 0.367 0.376 0.396 0.398 0.520 0.684 1.159
MAE 0.423 0.443 0.453 0.459 0.436 0.510 0.582 0.790

+CDP
MSE 0.303 0.321 0.327 0.352 0.341 0.487 0.641 1.022
MAE 0.387 0.408 0.412 0.426 0.404 0.497 0.570 0.745

Autoformer
MSE 0.201 0.222 0.231 0.254 0.266 0.307 0.359 0.419
MAE 0.317 0.334 0.338 0.361 0.336 0.367 0.395 0.428

+CDP
MSE 0.191 0.210 0.215 0.248 0.256 0.283 0.344 0.410
MAE 0.305 0.325 0.329 0.354 0.336 0.348 0.391 0.419

FEDformer*
MSE 0.193 0.201 0.214 0.246 0.217 0.276 0.339 0.403
MAE 0.308 0.315 0.329 0.355 0.296 0.336 0.380 0.428

+CDP
MSE 0.187 0.200 0.210 0.238 0.200 0.265 0.319 0.389
MAE 0.302 0.314 0.326 0.349 0.279 0.323 0.365 0.408
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Fig. 3. Consistency of Informer on different time periods. We demonstrate the consis-
tency over six periods of the same length based on ECL and Weather datasets. The
solid lines indicate that CDP exists, while the dotted lines indicate the opposite. The
x-axis is the different periods, and the y-axis is the corresponding MSE metrics. T
stands for the prediction length.

4.4 Ablation Studies

We conduct a series of experiments to evaluate the effectiveness of different
modules in our approach on Exchange dataset, and varify the universality and
consistency of the proposed CDP on ECL and Weather datasets.

Effectiveness of different module. The baseline in ablation studies is
formed by replacing the self-attention and cross-attention module with auto-
correlation and series decomposition block in Autoformer [16]. The results of
Exp 2 reported in Table 2 show that the performance is improved by an average
15.6% MSE reduction with the help of CDP. When collaborating with GCM,
the MSE reduction of Exp 3 decreases to 13.6% compared to the baseline. This
shows that our GCM helps model to extract more comprehensive features. When
the baseline model is equipped with all components in Exp 5, including CDP
and GCM, the MSE reduction comes to 20.0% at all horizons finally. Notably,
the results of Exp 3 and Exp 4 imply the necessity of the semi-adaptive graph,
which is superior to the common graph structure.
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Universality and consistency of CDP. We conduct several experiments
on ECL and Weather datasets to verify the universality and consistency of the
proposed CDP. We select several representative works based on transformer in
the multivariate time series forecasting field, including a variant of Informer [20],
Autoformer [16] and FEDformer [21]. The variant of Informer means replacing all
the full self-attention module with ProbSparse self-attention [20] in the original
Informer. As reported in Table 3, the performances of different baseline models
are all improved with the help of CDP. Beyond these, we investigate the mech-
anism of CDP by dividing the forecast period into six equal parts and calculate
the MSE metrics for the Informer over six sub-periods. As shown in Figure 3, the
metrics of CDP-based models over different periods change more slippery, unlike
the sudden jitter in the CDP-free models. In the ECL dataset, the metrics of the
model with CDP on each period are close to a straight line, which shows that
CDP can prompt the model to acquire consistant results over different periods.
Especially, in Figure 3(b) and (d), CDP forces the model to sacrifice short-term
prediction accuracy to ensure more accurate long-term results.

5 Conclusion

In this paper, we present Stecformer, a new approach for multivariate long-term
time series forecasting, which contains two effective components: a semi-adaptive
graph based extractor for generating fully expressed spatio-temporal feature
maps and a cascaded decoders based predictor to narrow the prediction gaps
between different time periods. Our Stecformer achieves a notable gap over the
baseline model and is comparable with state-of-the-art transformer-based meth-
ods on the public datasets. We further validate the effectiveness of individual
components in our approach. Especially, the proposed Cascaded Decoding Pre-
dictor can be applied to various transformer-based methods to ensure a higher
accuracy and the consistency of different prediction periods.
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